Kainate binding proteins possess functional ion channel domains.

نویسندگان

  • C Villmann
  • L Bull
  • M Hollmann
چکیده

Kainate binding proteins (KBPs) are highly homologous to ionotropic glutamate receptors; however, no ion channel function has been demonstrated for these proteins. To investigate possible reasons for the apparent lack of ion channel function we transplanted the ion channel domains of five KBPs into glutamate receptors GluR 6 and GluR1. In each case we obtained functional chimeric receptors in which glutamatergic agonists were able to open the KBP-derived ion channel with EC50 values identical to those of the subunit contributing the ligand binding domain. Maximal current amplitudes were significantly smaller than those of the parent clones, however. We also show that the KBP ion channels are highly permeable for calcium and have certain pharmacological properties that are distinct from all other glutamate receptor (GluR) subunits. Thus, all five known KBPs, in addition to their well characterized functional ligand binding sites, have functional ion permeation pathways. Our data suggest that the lack of ion channel function in wild-type KBPs results from a failure to translate ligand binding into channel opening. We interpret our findings to indicate the requirement for a modulatory protein or an additional subunit serving to alter the structure of the KBP subunit complex such that signal transduction is enabled from the ligand binding site to the intrinsically functional ion pore.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kainate-binding proteins are rendered functional ion channels upon transplantation of two short pore-flanking domains from a kainate receptor.

Kainate-binding proteins belong to an elusive class of putative ionotropic glutamate receptors that to date have not been shown to form functional ion channels in heterologous expression systems, despite binding glutamatergic agonists with high affinity. To test the hypothesis that inefficient or interrupted signal transduction from the ligand-binding site via linker domains to the ion pore (ga...

متن کامل

Molecular dynamics simulations of the conformational changes of the glutamate receptor ligand-binding core in the presence of glutamate and kainate.

Excitatory synaptic transmission is mediated by ionotropic glutamate receptors (iGluRs) through the induced transient opening of transmembrane ion channels. The three-dimensional structure of the extracellular ligand-binding core of iGluRs shares the overall features of bacterial periplasmic binding proteins (PBPs). In both families of proteins, the ligand-binding site is arranged in two domain...

متن کامل

Stability of ligand-binding domain dimer assembly controls kainate receptor desensitization.

AMPA and kainate receptors mediate fast synaptic transmission. AMPA receptor ligand-binding domains form dimers, which are key functional units controlling ion-channel activation and desensitization. Dimer stability is inversely related to the rate and extent of desensitization. Kainate and AMPA receptors share common structural elements, but functional measurements suggest that subunit assembl...

متن کامل

N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation.

All ionotropic glutamate receptor (iGluR) subunits analyzed so far are heavily N-glycosylated at multiple sites on their amino-terminal extracellular domains. Although the exact functional significance of this glycosylation remains to be determined, it has been suggested that N-glycosylation may be a precondition for the formation of functional ion channels. In particular, it has been argued th...

متن کامل

Coupled Control of Desensitization and Gating by the Ligand Binding Domain of Glutamate Receptors

The kinetics of ligand gated ion channels are tuned to permit diverse roles in cellular signaling. To follow high-frequency excitatory synaptic input, postsynaptic AMPA-type glutamate receptors must recover rapidly from desensitization. Chimeras between AMPA and the related kainate receptors demonstrate that the ligand binding domains alone control the lifetime of the desensitized state. Mutati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 20  شماره 

صفحات  -

تاریخ انتشار 1997